
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 1227–1234
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Rapid Communications
Thermoelastic damping effect on in-extensional vibration of rotating
thin ring
Sun-Bae Kim a, Young-Ho Na a, Ji-Hwan Kim b,�

a School of Mechanical and Aerospace Engineering, College of Engineering, Seoul National University, Seoul, 151-742 Republic of Korea
b Institute of Advanced Aerospace Technology, School of Mechanical and Aerospace Engineering, College of Engineering, Seoul National University,

Seoul, 151-742 Republic of Korea
a r t i c l e i n f o

Article history:

Received 18 August 2009

Received in revised form

7 December 2009

Accepted 9 December 2009
Handling Editor: L.G. Tham
important factors to elicit energy dissipation due to the irreversible heat flow of
Available online 4 January 2010
0X/$ - see front matter & 2009 Elsevier Ltd. A

016/j.jsv.2009.12.014

responding author. Tel.: +82 2 880 7383; fax:

ail address: jwhkim@snu.ac.kr (J.-H. Kim).
a b s t r a c t

Sensitive devices such as resonant sensors and radio frequency micro-electro-

mechanical system (RF-MEMS) filters etc., require high Quality factors (Q-factors)

defined as the ratio of total system energy to dissipation that occurs due to various

damping mechanisms. Also, thermoelastic damping is considered to be one of the most

oscillating structures in the micro scales. In this study, the Q-factor for thermoelastic

damping is investigated in rotating thin rings with in-plane vibration. First, in order to

obtain the temperature profile of the model, a heat conduction equation for the thermal

flow across the radial direction is solved based on the bending approximation so-called

in-extensional approximation of the ring. Using the temperature distribution coupled

with a displacement, a governing equation of the ring model can then be derived.

Eventually, an eigen-value analysis is performed to obtain the natural frequency of

rotating thin rings, and the analytical and numerical values of Q-factors can then be

determined by the definition. Furthermore, the effects of rotating speed, dimensions of

the ring, mode numbers and ambient temperatures on the Q-factor are discussed in

detail.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Resonators have been developed for rate sensors, namely gyroscopes of micro-electro-mechanical systems (MEMS).
Also, the systems have been widely used in aerospace, automotive and industrial parts such as automotive vehicle stability
enhancement systems, aerospace control systems and RF-MEMS filters, etc. Energy dissipation due to various damping
factors is extremely significant during the operation of rate sensors in working mechanisms. Thus, it is very important to
thoroughly examine and fully analyze the influence of damping mechanisms on the oscillating structures.

For a wide range of application fields of resonators, the aim of design is to maximize the Quality factors (Q-factors)
defined as the ratio of the kinetic and potential energy of the system to the dissipated energy by various damping
mechanisms [1]. Generally, there are two reasons for energy dissipation of the vibrant structures: extrinsic and intrinsic
damping mechanisms. Extrinsic damping mechanisms are gas damping, support losses and squeeze-film damping. These
mechanisms can be effectively eliminated by suitable handling. For instance, evacuating the environment of oscillating
structures, the gas damping effect on the structures can be neglected [2]. Moreover, the support losses originated from the
ll rights reserved.
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energy exchange between the resonator and the support can be minimized by proper design [3]. Finally, squeeze-film
damping can be negligible by placing the capacitor electrodes and encapsulating the device from afar [4]. On the other
hand, intrinsic mechanisms are closely related to the material and geometric properties of structures. Thus, it is
significantly more difficult to minimize the effect of intrinsic mechanisms than extrinsic mechanisms. Up to now, it has
been well known that one of the most important energy loss factors is thermoelastic damping in very small structures.
Also, previous research [5] has shown that this kind of damping creates energy dissipation by the irreversible heat flow of
oscillating structures.

A great deal of work has been carried out on Q-factor for thermoelastic damping of structures. According to the various
objectives in each application, many kinds of structures such as beams, thin rings, rectangular and circular plates and
cylindrical shells, etc. have been widely adopted in aerospace, automotive and industrial fields. Firstly, Zener [6] presented
the analytic and approximate form of the factor for the homogeneous, isotropic and uniform beams based on some
additional assumptions. Furthermore, the paper emphasized that the fluctuations of temperature in a vibrating beam are
important in Q-factors associated with thermodynamical considerations. Lifshitz and Roukes [7] refined Zener’s work for
thin beams. Using the equations of linear thermoelasticity, the process of thermoelastic damping, namely fundamental
dissipation mechanism in micro- and nanomechanical systems, was examined. Using the flexural vibrating beam model,
Duwel et al. [8] compared the theoretical value of the Q-factor to the experimental result, and showed that Zener’s method
could successfully depict the effects of beam dimensions and material properties on the factor relevant to thermoelastic
damping. Khisaeva and Ostoja-Starzewski [9] examined thermoelastic damping in micro-/nano-beams considering the
finite speed of heat transfer by a hyperbolic heat conduction equation. Meanwhile, Wong et al. [10] applied Zener’s theory
to thin silicon rings, and obtained the theoretical expression of Q-factor. Moreover, it was verified that the theoretical and
experimental results were almost equal for the practical size of the model. Applying a finite element method, Yi [11]
studied the geometric effects on thermoelastic damping in MEMS resonators. To obtain the linear eigenvalue equation,
perturbation forms of the temperature and displacements are used. Furthermore, the order of the problem and
computational time can be reduced by using the Fourier reduction method. Nayfeh and Younis [5] acquired the analytical
form of the Q-factor for thermoelastic damping with rectangular microplates. The perturbation method is also used to
obtain the analytical expression of the factor. Applying a thermal-energy approach to the formulation, Hao [12] analytically
investigated the damping of micro- and nano-electromechanical circular thin-plate resonators with the contour-mode
vibrations. Meanwhile, Lu et al. [13] presented an approximate form of the Q-factor for thermoelastic damping in a thin
cylindrical shell. The general thermoelastic coupled equations are simplified by using Donnell–Mushtari–Vlasov
approaches and are approximately solved by using the Galerkin method.

In this paper, the Q-factor relevant to thermoelastic damping in the rotating thin ring under the in-plane vibration is
investigated. Using the bending approximation in the thin beam theory, the temperature profile of the ring is obtained. The
heat conduction equation for the thermal flow in the radial direction is considered. An analytic form of Q-factor is
determined using the results of the eigen-value analysis with the temperature distribution. Also, the results are compared
with the numerical data created by the iterative method for verification. Furthermore, the influences of the rotating speed,
the dimensions of the ring, the eigen-modes and ambient temperatures on the natural frequency and the Q-factor are
widely examined.
2. Formulations

In this chapter, a steady rotating thin ring with the angular velocity O under thermoelastic damping is considered in
order to analyze the Q-factor of the model. Fig. 1 shows a global polar coordinate system (r,y,Z) and a local coordinate
system (x,y,z). Here, the x-, y- and z-axes are radially directed outwards, circumferentially directed, and tangential to the
Fig. 1. Geometry of a thin ring with a global and local coordinate system.
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cross section, respectively. Also, the z-axis in the local coordinate system is the same as the direction of the z-axis in the
global polar coordinate system. In addition, the geometry of a thin ring is depicted in the figure with mean radius a, radial
thickness b, and axial depth d. Moreover, u and n denote the displacements in the x and y directions, respectively. Their
harmonic solutions can be assumed as

uðy; tÞ ¼U0ðyÞeiot ¼ AueiðnyþotÞ

vðy; tÞ ¼ V0ðyÞeiot ¼ AveiðnyþotÞ (1)

where mode number n¼ 2;3;4; . . ..
2.1. Heat conduction equation

To obtain the temperature profile for the thermal flow coupled with the strain, the heat conduction equation is
employed as [14]

qT

qt
�wr2T ¼�

EaTa

Cvð1�2nÞ
qe
qt

� �
(2)

where T is the change in the temperature from the ambient temperature Ta, and can be assumed as

Tðx; y; tÞ ¼ T0ðx; yÞeiot (3)

Furthermore, w, Cv and a are the thermal diffusivity of the material, the heat capacity per unit volume, and the coefficient of
thermal expansion, respectively. Meanwhile, E, n and e are the Young’s modulus, the Poisson’s ratio and the dilatation,
respectively.

If the heat flow between the surfaces and the environment of the ring is negligible, then the zero heat flux boundary
conditions can be applied. Therefore, the temperature profile of a thin ring coupled with displacement can be obtained
as [15]
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Because k depends on natural frequency o, the temperature distribution T0 is a function of o.
2.2. Quality factor of rotating thin rings

Equation of motion for rotating thin rings are given as [16]
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where r, A and O are the mass density, the cross sectional area and the angular velocity of the ring, respectively.
In order to express the equation of motion in terms of displacement fields only, the adequate form of bending moment

considering the thermal effect on a cross section is derived as [15]
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where the frequency dependent elastic modulus Eo and the second moment of inertia of the ring cross sectional area I are
defined as

Eo ¼ E½1þDE 1þ f ðoÞ
� �

�; I¼
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(8)

Assuming that the deformation for circumferential centerline of the ring is very small compared to the bending
deformation, in-extensional assumption can be applied
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The solution of this equation can be obtained by assuming the displacement u as the form of Eq. (1). As a result, the
natural frequency of a rotating thin ring is given as:

o¼ 2On

1þn2
7
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Eq. (10) is implicit of the natural frequency because the frequency dependent elastic modulus Eo is a function of natural
frequency. The Q-factor of the rotating thin ring can be directly obtained using the iterative method from Eq. (10). For
various examples, the numerical results will be compared with the analytic solution for Q-factor in the next section.

Furthermore, the isothermal natural frequency of the non-rotating model o0;nr can be expressed as follows:

o0;nr ¼
ðn2�1Þn
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Now, the following factor is introduced,

x¼ b
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and complex function f ðoÞ can be rewritten as:
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Using Eqs. (10) and (11), the ratio of the natural frequencies between the case of the rotating ring and the isothermal
case without a rotation is:
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Assuming that DE and O=o0; nr are small compared to unity, series expansion can be used to simplify the square root
term:
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Thus, the real and imaginary parts of a non-dimensional natural frequency are
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Finally, the Q-factor for the case of the rotating thin ring yields:
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where the subscript r denotes the rotational case.

3. Results and discussion

In this chapter, a rotating silicon ring is selected to examine the analytic and numerical results for the Q-factor relevant
to the thermoelastic damping. As shown in Eq. (18), if the ring has no rotating speed (O¼ 0), the expression for Q-factor
exactly equals the result in Ref. [15]. The mechanical and thermal properties [10] of silicon in this study are shown in
Table 1. Also, since many devices such as the resonator gyro are generally operated at the n¼ 2 mode, unless otherwise
Table 1
Mechanical and thermal properties at 298 K [10].

Young’s modulus, E 165 GPa

Mass density, r 2:33� 103 Kg m�3

Thermal expansion coefficient, a 2:6� 10�6 K�1

Heat capacity per unit volume, Cv 1:64� 106 J m�3 K�1

Thermal diffusivity, w 8:6� 10�5 m2 s�1
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Fig. 2. Q-factor of rotating ring with respect to rotation ða¼ 3 mm;b¼ 100mmÞ.

Table 2
Q-factor for various radius a and thickness b.

a(mm) b(mm)

160 120 80 40

5 11,241 10,241 12,604 12,067 32,590 32,570 246,947 254,380

�9.765% �4.450% �0.061% 2.922%

4 13,307 12,308 10,724 10,164 21,761 21,569 161,009 162,894

�8.117% �5.510% �0.890% 1.157%

3 19,605 18,623 11,295 10,730 13,865 13,623 91,532 91,814

�5.273% �5.266% �1.776% 0.307%

2 38,928 37,995 18,402 17,848 10,238 9987 41,331 41,298

�2.456% �3.104% �2.513% �0.080%

1 139,702 138,830 61,977 61,469 20,793 20,549 12,687 12,624

�0.628% �0.826% �1.187% �0.499%

Bold: rotating case (O=4�104 rpm).

Normal: non-rotating case.
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noted, the Q-factor is calculated only for the mode. The ambient temperature Ta is assumed to be 298 K(normal
temperature) for typical surroundings.

Fig. 2 represents the effect of rotating speed on the Q-factors. It shows the bifurcations of Q-factors due to the Coriolis
acceleration effect. For the iterative method, solid and dashed lines are related to the backward and forward traveling
waves, respectively. Meanwhile, square and circle symbols denote the backward and forward waves, respectively, for the
analytic method. As shown in the figure, the result of the analytic method for the Q-factor agrees well with that of the
iterative method within O=o0;nr C0:58 or O¼ 4� 105 rpm. When the rotating speed is low enough, the Q-factor is rarely
affected. However, as the rotating speed increases, the rotating effect on the Q-factor definitely increases, especially for the
backward traveling wave types. Thus, if the ring has a high rotating speed, the rotating effect should be included.

Table 2 illustrates the comparative Q-factors between a non-rotating case and a rotating case (O¼ 4� 104 rpm) with
various dimensions. Bold and normal fonts refer to the rotating and non-rotating cases, respectively. As shown in the data,
the Q-factor with the rotating case has somewhat a high value compared to that of the non-rotating case for the most range
of given dimensions. However, there is a different tendency only in the small radial thickness b¼ 40mm. The difference
between the two cases is within the range �9.765 percent� +2.922 percent.

The inverse of the Q-factor for the rotating speed O¼ 4� 103 rpm with different geometries for the thin silicon ring is
depicted in Fig. 3(a). In this figure, Q-factors obtained from the analytic method yield almost the same values compared to
that of the iterative method. On the design point of view, the ring should not be operated in vibration modes which have a
high thermoelastic damping. Meanwhile, when the radial thickness of the ring is decreasing, the magnitudes of the inverse
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Table 3

Q-factor with/without rotation for various temperatures ða¼ 3 mm; b¼ 120mmÞ.

Temperature (K)

240 258 298 320 348

að�10�6 K�1
Þ 1.99 2.24 2.60 2.85 3.06

Cvð�106 Jm�3 K�1
Þ 1.51 1.52 1.64 1.68 1.73

wð�10�5 m2 s�1Þ 14.3 11.7 8.60 7.92 6.97

Q-factorðO¼ 0ÞI 19,632 14,444 10,730 8804 7690

Q-factorðO¼ 4� 103
Þ
II 19,698 14,503 10,786 8852 7735

Q-factorðO¼ 4� 104
Þ
III 20,293 15,042 11,294 9289 8143

Q-factorðO¼ 4� 105
Þ
IV 25,416 19,800 15,887 13,262 11,862

(I–II)/I(%) �0.341 �0.415 �0.522 �0.557 �0.585

(I–III)/I(%) �3.372 �4.147 �5.256 �5.521 �5.891

(I-IV)/I(%) �29.469 �37.091 �48.062 �50.653 �54.252
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of the Q-factor increase. This result has the same concept in the previous research work for the beam model [7]. As another
example, Fig. 3(b) shows the inverse of the Q-factor for rotating speed O¼ 4� 105 rpm. The difference of the calculated
values between iterative and analytic methods is not so large, can be neglected; this can be inferred from Fig. 2. The results
obtained by the iterative method for each rotating speed are depicted simultaneously in Fig. 3(c). The Q-factor with
O¼ 4� 105 rpm is larger than the value with O¼ 4� 103 rpm for the most range of given dimensions and modes.

Table 3 shows a comparison of the Q-factor between non-rotating and rotating cases with respect to temperature. As
the rotating speed of the model increases, the Q-factor considerably increases under the given temperatures. Also, the
same results can be seen in Fig. 2 for the forward case within O¼ 4� 105 rpm. Meanwhile, the Q-factors of the thin silicon
ring are inversely proportional to the ambient temperatures for each rotating speed as in Fig. 2. Moreover, as the
surrounding temperature increases, the difference between cases of both with and without rotating effect increases
according to each rotating speed. These results indicate that the effect of rotation on the Q-factor of a thin silicon ring
increases for the higher temperature environment.

4. Conclusions

An analytical expression for the Q-factor due to thermoelastic damping is derived for the rotating thin ring in the
present work. The result from the analytic method is compared to that of the iterative method to verify the expression of
the analytic Q-factors. Furthermore, the influences of geometry, rotational speed and ambient temperature on Q-factors
are examined.

It can be shown that the Q-factor of the circular silicon ring is in inverse proportion to the surrounding temperatures.
Moreover, as the dimensions of the thin ring become smaller, thermoelastic damping considerably increases. Finally,
because the effect of rotation on the Q-factor of a thin ring is significantly important in a high temperature environment
and at a very large rotational speed, it should not be neglected.
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